Notable Publications of the Gross Lab

  1. Gross, D.S. and Garrard, W.T.  1988.  Nuclease hypersensitive sites in chromatin.  Ann. Rev. Biochem. 57: 159-197.
  2. Gross, D.S., English, K.E., Collins, K.W., and Lee, S.  1990.  Genomic footprinting of the yeast HSP82 promoter reveals marked distortion of the DNA helix and constitutive occupancy of heat shock and TATA elements.  J. Mol. Biol. 216: 611-631.
  3. Lee, S. and Gross, D.S.  1993.  Conditional silencing:  The HMRE mating-type silencer exerts a rapidly reversible position effect on the yeast HSP82 heat shock gene.  Mol. Cell. Biol. 13: 727-738.
  4. Gross, D.S., Adams, C.C., Lee, S., and Stentz, B.  1993.  A critical role for heat shock transcription factor in establishing a nucleosome-free region over the TATA-initiation site of the yeast HSP82 heat shock gene.  EMBO J. 13: 3931-3945.
  5. Erkine, A.M., Magrogan, S.F., Sekinger, E. A. and Gross, D.S. 1999.  Cooperative binding of heat shock factor to the yeast HSP82 promoter in vivo and in vitro.  Mol. Cell. Biol. 19: 1627-1639.
  6. Sekinger, E. A. and Gross, D.S.  1999.  SIR repression of a yeast heat shock gene:  UAS and TATA footprints persist within heterochromatin.  EMBO J. 18: 7041-7055.
  7. Venturi, C. B., Erkine, A.M., and Gross, D.S.  2000.  Cell cycle-dependent binding of yeast heat shock factor to nucleosomes.  Mol. Cell. Biol. 20: 6435-6448.
  8. Raitt, D.C., Erkine, A.M.,  Johnson, A.L, Makino, K., Morgan, B., Gross, D.S. and Johnston, L.H.  2000. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes in response to oxidative stress. Mol. Biol. Cell 11: 2335-2347.
  9. Sekinger, E. A. and Gross, D. S. 2001. Silenced chromatin is permissive to activator binding and PIC recruitment.  Cell 105: 403-414.  
    Featured in News & Comment, Trends in Genetics 17: 381 (2001).  
    Selected as an F1000 Prime article by Faculty of 1000.
  10. Zhao, J., Herrera-Diaz, J. and Gross, D.S.  2005.  Domain-wide displacement of histones by activated heat shock factor occurs independently of Swi/Snf and is not correlated with RNA polymerase II density.  Mol. Cell. Biol. 25: 8985-8999.
  11. Singh, H., Erkine, A.M., Kremer, S.B., Duttweiler, H.M., Davis, D.A., Iqbal, J., Gross, R.R. and Gross, D.S.  2006.  A functional module of yeast Mediator that governs the dynamic range of heat shock gene expression.  Genetics 172: 2169-2184.
  12. Gao, L. and Gross, D.S.  2008. Sir2 silences gene transcription by targeting the transition between RNA polymerase II initiation and elongation.  Mol. Cell. Biol. 28: 3979-3994.  
    •    Selected as an F1000 Prime article by Faculty of 1000.
  13. Kremer, S.B. and Gross, D.S. 2009.  SAGA and Rpd3 chromatin modification complexes dynamically regulate heat shock gene structure and expression.  J. Biol. Chem. 284: 32914-32931.
  14. Kremer, S.B., Kim, S., Jeon, J.O., Moustafa, Y.W., Chen, A., Zhao, J. and Gross, D.S.  2012.  Role of Mediator in regulating Pol II elongation and nucleosome displacement in Saccharomyces cerevisiae.  Genetics 191: 95-106. 
    •    Selected as an F1000 Prime article by Faculty of 1000.
  15. Kim, S. and Gross, D.S.  2013.  Mediator recruitment to heat shock genes requires dual Hsf1 activation domains and Mediator Tail subunits Med15 and Med16.  J. Biol. Chem. 288: 12197-12213.
  16. Zhang, H., Gao, L., Anandhakumar, J. and Gross, D.S.  2014.  Uncoupling transcription from histone covalent modification.  PLoS Genetics 10: e1004202.
    •    A comment on this paper (“New & Noteworthy”) appeared on the homepage of the Saccharomyces Genome Database ( on 1 May 2014.
    •    Selected by Abcam as one of the top epigenetics articles in 2014.
    •    Featured on the Epigenetics Blog, EpiBeat July 2014.
  17. Anandhakumar, J., Moustafa, Y.W., Chowdhary, S., Kainth, A.S. and Gross, D.S. 2016.  Evidence for multiple Mediator complexes in yeast independently recruited by activated Heat Shock Factor.  Mol. Cell. Biol. 36: 1943-1960.
  18. Chowdhary, S., Kainth, A.S. and Gross, D.S. 2017.  Heat Shock Protein genes undergo dynamic alteration in their three-dimensional structure and genome organization in response to thermal stress.  Mol. Cell. Biol. 37: e00292-17, 1-22.
  19. Pincus, D., Anandhakumar, J., Thiru, P., Guertin, M.J., Erkine, A.M. and Gross, D.S.  2018.  Genetic and epigenetic determinants establish a continuum of Hsf1 occupancy and activity across the yeast genome.  Mol. Biol. Cell 29: 3168-3182.
  20. Chowdhary, S., Kainth, A.S., Pincus, D. and Gross, D.S.  2019. Heat Shock Factor 1 drives intergenic association of its target gene loci upon heat shock. Cell Reports 26: 18-28.  

Complete List of Publications

David Gross Laboratory